

ELIZADE UNIVERSITY ILARA-MOKIN ONDO STATE

FACULTY: Basic and Applied Sciences

DEPARTMENT: Physical and Chemical Sciences

SECOND SEMESTER EXAMINATIONS

2018/2019 ACADEMIC SESSION

COURSE CODE: PHY 212

COURSE TITLE: ANALOG ELECTRONICS

DURATION: 2 HOURS

HOD's SIGNATURE

TOTAL MARKS:

Matriculation Number:

INSTRUCTIONS:

- 1. Write your matriculation number in the space provided above and also on the cover page of the exam booklet.
- 2. This question paper consists of 1 page with printing on both sides.
- 3. Answer all questions in the exam booklet provided.
- 4. More marks are awarded for problem solving method used to solving problems than for the final numerical answer.
- 5. Box your final answers. Marks will be deducted for untidy work.
- 6. Attempt any four of the six questions

QUESTION ONE

(i

(i

- . (a) The plates of a parallel-plate capacitor in vacuum are $7.00 \, \mathrm{mm}$ apart and $3.00 \, \mathrm{m}^2$ in area. A potential difference of $10,000 \, \mathrm{V}$ is applied across the capacitor. Compute
- (i) the capacitance
- (ii) the charge on each plate
- (iii) the magnitude of the electric field in the space between them.
- (b) Find the equivalent capacitance between a and b for the capacitors network shown in fig. 1 below.

QUESTION TWO

- (a) An electrician wanted to use Copper wire and Aluminum wire of a cross-sectional area of $4.00 \times 10 \text{ m}^2$ to run a connection between two buildings that are 20.0 cm apart. If the resistivity of the Copper wire is $1.7 \times 10^{-8} \Omega m$ and Aluminum wire is $2.82 \times 10^{-8} \Omega m$.
- (i) determine the resistance of the copper wire and the Aluminum wire.
- (ii) State which of the wires is advisable to use and why?
- (b) Determine the permissible ohmic range of the following resistors in fig. 2 below

QUESTION THREE

- (a) i. Explain in detail the three factors that affect a capacitor
 - ii. State two differences between Series combination and Parallel combination of resistors.
 - iii. With the aid of schematic diagram describe resistor, capacitor, diode and inductor
- (b). A resistor of 7200 Ω was connected across the secondary coil of a transformer that has 620V, if the transformer turns ratio is wounded in 1: 6

(i) How much last

- (ii) Calculate the value of Ip.
- (iii) What is the efficiency of the transformer?

QUESTION FOUR

- (a) i. What is self-inductance and state the unit
 - ii. Show the wave form of a Half and Full wave rectification without a capacitor.
- (b) Calculate the following from fig 3 below (i) $V_{\text{out(peak)}}$ (ii) V_{dc} (iii) I_{L} (iv) I_{diode} (v) PIV for any diode (vi)

QUESTION FIVE

- (a) i. What is leakage flux.
 - ii. In fig. 4 below, determine the total resistance R_T and Current I_T of the resistor network

- (b) A transformer whose primary and secondary voltage ratings are 220 and 60 V, respectively, has a power rating of 380 VA. Calculate the maximum current at
 - i. the primary coil
 - ii. the secondary coil.

OUESTION SIX

- (a) i. Describe in detail what is a transformer and four types of transformer.
 - (ii) What is mutual inductance between two inductors?
 - (b) A 200mH coil L₁ produces 80μWb of magnetic flux, 60μWb of this total flux linked with L₂ that was 300mH.
 - (i) What is the coefficient of coupling between L_1 and L_2 .
 - (ii) Determine the mutual inductance between them